Discrete transparent boundary conditions for the linearized Green-Naghdi system of equations
نویسندگان
چکیده
In this paper, we introduce artificial boundary conditions for the linearized Green-Naghdi system of equations. The derivation of such continuous (respectively discrete) boundary conditions include the inversion of Laplace transform (respectively Z-transform) and these boundary conditions are in turn non local in time. In the case of continuous boundary conditions, the inversion is done explicitly. We consider two spatial discretisations of the initial system either on a staggered grid or on a collocated grids, both of interest from the practical point of view. We use a Crank Nicolson time discretization. The proposed numerical scheme with the staggered grid permits explicit Z-transform inversion whereas the collocated grid discretization do not. A stable numerical procedure is proposed for this latter inversion. We test numerically the accuracy of the described method with standard Gaussian initial data and wave packet initial data which are more convenient to explore the dispersive properties of the initial set of equations. We used our transparent boundary conditions to solve numerically the problem of injecting propagating (planar) waves in a computational domain.
منابع مشابه
Post-buckling response of thin composite plates under end-shortening strain using Chebyshev techniques
In this paper, a method based on Chebyshev polynomials is developed for examination of geometrically nonlinear behaviour of thin rectangular composite laminated plates under end-shortening strain. Different boundary conditions and lay-up configurations are investigated and classical laminated plate theory is used for developing the equilibrium equations. The equilibrium equations are solved dir...
متن کاملA Simple and Systematic Approach for Implementing Boundary Conditions in the Differential Quadrature Free and Forced Vibration Analysis of Beams and Rectangular Plates
This paper presents a simple and systematic way for imposing boundary conditions in the differential quadrature free and forced vibration analysis of beams and rectangular plates. First, the Dirichlet- and Neumann-type boundary conditions of the beam (or plate) are expressed as differential quadrature analog equations at the grid points on or near the boundaries. Then, similar to CBCGE (direct ...
متن کاملBifurcations and parametric representations of traveling wave solutions for the Green–Naghdi equations
By using the bifurcation theory of dynamical systems to study the dynamical behavior of the Green–Naghdi equations, the existence of solitary wave solutions along with smooth periodic traveling wave solutions is obtained. Under different regions of parametric spaces, various sufficient conditions to guarantee the existence of the above solutions are given. Some exact and explicit parametric rep...
متن کاملDiscrete Transparent Boundary Conditions for General Schrr Odinger{type Equations
Transparent boundary conditions (TBCs) for general Schrr odinger{ type equations on a bounded domain can be derived explicitly under the assumption that the given potential V is constant on the exterior of that domain. In 1D these boundary conditions are non{local in time (of memory type). Existing discretizations of these TBCs have accuracy problems and render the overall Crank{Nicolson nite d...
متن کاملExact Implementation of Multiple Initial Conditions in the DQ Solution of Higher-Order ODEs
The differential quadrature method (DQM) is one of the most elegant and useful approximate methods for solving initial and/or boundary value problems. It is easy to use and also straightforward to implement. However, the conventional DQM is well-known to have some difficulty in implementing multiple initial and/or boundary conditions at a given discrete point. To overcome this difficulty, this ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017